Kubernetes in Industry..!!
Going back in time
Let’s take a look at why Kubernetes is so useful by going back in time.
When containers were first introduced in 2008, Virtual Machines, or VMs, were the state-of-the-art option to optimize a data center’s physical resources.
Traditional deployment era: Early on, organizations ran applications on physical servers. There was no way to define resource boundaries for applications in a physical server, and this caused resource allocation issues. For example, if multiple applications run on a physical server, there can be instances where one application would take up most of the resources, and as a result, the other applications would underperform.
Virtualized deployment era: As a solution, virtualization was introduced. It allows you to run multiple Virtual Machines (VMs) on a single physical server’s CPU. Virtualization allows applications to be isolated between VMs and provides a level of security as the information of one application cannot be freely accessed by another application.
Each VM is a full machine running all the components, including its own operating system, on top of the virtualized hardware.
Container deployment era: Containers are similar to VMs, but they have relaxed isolation properties to share the Operating System (OS) among the applications. Therefore, containers are considered lightweight. Similar to a VM, a container has its own filesystem, share of CPU, memory, process space, and more. As they are decoupled from the underlying infrastructure, they are portable across clouds and OS distributions.
Why we need Kubernetes and what it can do…
KUBERNETES also known as K8s, is an open-source system for automating deployment, scaling, and management of containerized applications.
Kubernetes is a portable, extensible, open-source platform for managing containerized workloads and services, that facilitates both declarative configuration and automation.It has a large, rapidly growing ecosystem. Kubernetes services, support, and tools are widely available.
Kubernetes geared up(K8s):
Kubernetes has proven to be more than just Borg for everyone. It has distilled with most reliable API patterns and architectures of prior software. It has coupled them with current authorization policies, load balancing, and other features that are required to manage and run applications at massive scale. In turn, this provides developers with the groundwork for cluster abstractions to enable true portability across clouds.
With the explosion of innovation around Kubernetes, businesses have started to analyze obstacles for complete adoption. Many giants in the industry have increased investing resources and assuring mission-critical workloads. Fortunately, Kubernetes got a better response for the wave of adoption that swept to the forefront of crowded container management space.
Let see some case studies of industry challenges and how kubernetes solving..!!!
CASE STUDY:
case-study-1:
company: IBM Cloud
Challenge
IBM Cloud offers public, private, and hybrid cloud functionality across a diverse set of runtimes from its OpenWhisk-based function as a service (FaaS) offering, managed Kubernetes and containers, to Cloud Foundry platform as a service (PaaS). These runtimes are combined with the power of the company’s enterprise technologies, such as MQ and DB2, its modern artificial intelligence (AI) Watson, and data analytics services. Users of IBM Cloud can exploit capabilities from more than 170 different cloud native services in its catalog, including capabilities such as IBM’s Weather Company API and data services. In the later part of 2017, the IBM Cloud Container Registry team wanted to build out an image trust service.
Solution
The work on this new service culminated with its public availability in the IBM Cloud in February 2018. The image trust service, called Portieris, is fully based on the Cloud Native Computing Foundation (CNCF) open source project Notary, according to Michael Hough, a software developer with the IBM Cloud Container Registry team. Portieris is a Kubernetes admission controller for enforcing content trust. Users can create image security policies for each Kubernetes namespace, or at the cluster level, and enforce different levels of trust for different images. Portieris is a key part of IBM’s trust story, since it makes it possible for users to consume the company’s Notary offering from within their IKS clusters. The offering is that Notary server runs in IBM’s cloud, and then Portieris runs inside the IKS cluster. This enables users to be able to have their IKS cluster verify that the image they’re loading containers from contains exactly what they expect it to, and Portieris is what allows an IKS cluster to apply that verification.
Impact
IBM’s intention in offering a managed Kubernetes container service and image registry is to provide a fully secure end-to-end platform for its enterprise customers. “Image signing is one key part of that offering, and our container registry team saw Notary as the de facto way to implement that capability in the current Docker and container ecosystem,” Hough says. The company had not been offering image signing before, and Notary is the tool it used to implement that capability. “We had a multi-tenant Docker Registry with private image hosting,” Hough says. “The Docker Registry uses hashes to ensure that image content is correct, and data is encrypted both in flight and at rest. But it does not provide any guarantees of who pushed an image. We used Notary to enable users to sign images in their private registry namespaces if they so choose.
case study-2:
company: Adidas
Challenge
In recent years, the adidas team was happy with its software choices from a technology perspective — but accessing all of the tools was a problem. For instance, “just to get a developer VM, you had to send a request form, give the purpose, give the title of the project, who’s responsible, give the internal cost center a call so that they can do recharges,” says Daniel Eichten, Senior Director of Platform Engineering. “The best case is you got your machine in half an hour. Worst case is half a week or sometimes even a week.”
Solution
To improve the process, “we started from the developer point of view,” and looked for ways to shorten the time it took to get a project up and running and into the adidas infrastructure, says Senior Director of Platform Engineering Fernando Cornago. They found the solution with containerization, agile development, continuous delivery, and a cloud native platform that includes Kubernetes and Prometheus.
Impact
Just six months after the project began, 100% of the adidas e-commerce site was running on Kubernetes. Load time for the e-commerce site was reduced by half. Releases went from every 4–6 weeks to 3–4 times a day. With 4,000 pods, 200 nodes, and 80,000 builds per month, adidas is now running 40% of its most critical, impactful systems on its cloud native platform.
For me, Kubernetes is a platform mad.
Any suggestions are always welcome…
Thank you for reading Guys…..😊😊😊😊😊